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NATURAL VIBRATIONS OF LAMINATED
ORTHOTROPIC SPHERES
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Abstract-A method based em the ll;ayJei.gh-.Ritz technique is used to study the natural vibrations of elastic
spheres composed of an arbitrary number of spherical layers, each with distinctdensitY'and spherically ortho­
tropic (transversely isotropic) properties. The basic form of the displacement field known from studies of isotropic
spheres is employed, except for the radial dependence which is taken in an approximate manner by considering
the sphere to be an assembJllge.of.a large nwnber .of spherical laminas; for each lamina, the radial dependence
of the displacement field is characterized by a discrete number of generalized coordinates. The approximation
results in two algebraic eigenvalue problems which are solved for examples ofisotropic andJaminated orthotropic
spheres.

INTRODUCTION

THE natural vibrations of elastic isotropic spheres have been studied for nearly a century,
from the early works of Jaerish [IJ and Lamb [2], to the recent analyses given by Sato and
Usami [3] and Shah et al. [4J. In the latter paper the natural vibrations of spheres were used
to examine the accuracy of several shell theories in a manner similar to Mindlin's [5J
comparison of exact and approximate plate theories and to Mirsky's[6J study of circular
cylinders. The behavior of laminated media in general and particularly laminated spheres
has received little attention, except for approximate analyses [7-9J, or for cases of ho­
mogeneous orthotropic or simple two layer systems with isotropic laminates [6,10-14].
Recently, analyses were presented of the natural vibl'ationsand waves in arbitrarily
laminated orthotropic infinite plates [15J and circular cylinders [16J,

In this paper a Rayleigh-Ritz procedure analogous to that given in [15, 16J is used to
investigate the natural vibrations of elastic spheres composed of an arbitrary number of
laminates, each with specified density and spherically orthotropiC, i.e; transversely iso­
tropic material properties. In this procedure the dependence of the displacement field in
the spherical angles () and 4J is specified at the outset as in the classical ap:pt'Qach, but the
radial dependence is taken in an approximate manner using a discrere set of generalized
coordinates. This approach results in an algebraiic eigenvalue problem which is solved by
use of an efficient eigensolution technique iIn The accuracy and efficiency of this for­
mulationare demonstrated by reproducing the results given by Sate and Usami [3J for a
solid isotropic sphere and an additional example is presented to indicate1ts~ty and
range of applicability.
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FORMULATION OF THE FREQUENCY EQUATION

In order to study the vibrations of laminated orthotropic spheres the displacement
forms which describe the behavior of isotropic spheres are required. As given in [4], the
displacement forms ui , i = r, 0, ¢ are of two types,

(a) First class vibrations (equivoluminal)

ur(r, 0, ¢, t) = 0

ue(r, 0, ¢, t) = mU l(r, t)P::'(cos 0) sin m¢

dpm

u,p(r, 0, ¢, t) = U l(r, t) dO" (cos 0) cos m¢.

(b) Second class vibrations

uk, 0, ¢, t) = Uk, t)P::'(cos 0) cos m¢

dpm

uir, 0, ¢, t) = U3(r, t) dO" (cos 0) cos m¢

O '" )P::,(cos 0) .
u</>(r, ''f',t) = -mU3(r,t . 0 smm¢

sm

(la)

(lb)

where t denotes time, r the spherical radius, 0 and ¢ spherical angles, see Fig. 1 and P::'
denotes the associated Legendre function ofdegree n and order m with m, n positive integers.
Although the analytical development in [4] is presented for isotropic spheres, the forms
given in equations (1) also apply for the case of transverse isotropy, as may be verified by
direct substitution into the displacement equations of motion. Further, substitution also
shows the functions U~r, t), i = 1,2,3 to be independent of the value m. This occurrence,
together with the fact that the value m does not influence the interface or free boundary
conditions, leads to a frequency equation and thus frequencies and radial distributions of
the associated eigenvectors which are independent of m. Consequently only the case
m ~ 0 need be considered where the solution forms are much simpler.

z

y

FIG. 1. Laminated orthotropic sphere.
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(a) First class vibrations (torsional)

(b) Second class vibrations

Ur = U2(r, t)Pn(COS 0)

dPnUo = U 3(r, t)dlf(cOS 0)

U,p = 0
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(2a)

(2b)

with Pn == P~ a Legendre polynomial of order n. Rather than directly solve the field
equations for the radial dependence in the functions Ui(r, t) i = 1,2,3 and formulate the
frequency equation in the usual way, the sphere is represented by a number of concentric
spherical subregions called laminas, several of which may represent a single laminate. For
each lamina the quantities U~r, t) in equation (2) are approximated for convenience by the
quadratic form

Ui(r,t) = UIi(t).(1-3r+2r2)+UMi(t).(4r-4r2)+Uo~t).(-r+2r2) i = 1,2,3 (3)

where

(4)

is a local radial variable, rr is the inner radius of the lamina, h its thickness, and UIi' UMi
and UOi are the generalized coordinates for inner, middle and outer lamina surfaces,
respectively.

The strain and kinetic energies for the lamina are obtained by integrating the strain
and kinetic energy densities over the lamina volume

(5a)

(5b)

where Eij and Cij are, respectively, the small strain tensor components and the transversely
isotropic elastic moduli, p is the mass density and t.he dot denotes differentiation in time.
After substitution of the displacement forms in equations (5) and integration, the energies
take the form

Vi = Hri}T[ki]{ri}

T i = H;JV[mi
] U·i }

i = 1,2
(6a)

(6b)
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where the superscript i = 1,2 denotes the ith vibration class and the symbol {ril is one of
the ordered sets of coordinates

(7a)

(7b)

and [kiJ and [niJ are the lamina stiffness and mass matrices, respectively, for the ith vibration
class. The Lagrangian L for the complete system is obtained by summation over all the
laminas

L = I(Ti- Vi) = HOiV[Mi]{Oi}-HUi}T[Ki]{Ui} (8)

where {Ui} is the set of generalized coordinates and [KiJ and [MiJ are the stiffness and mass
matrices for the ith class vibrations of the entire sphere. Use of Lagrange's equations gives

(9)

which, for simple harmolllc motion

reduces to the eigenvalue problem

([K iJ-w 2 [M iJ){Uh} = o.

(10)

(11)

Although this equation can be analyzed by a variety of numerical techniques for this study
a direct iterative eigensolution technique [17J is used, since a number of eigenvalues and
associated eigenvectors are simultaneously generated. An IBM 360/91 computer was
programmed to generate for each value n sets of eight and sixteen eigensolutions, respec­
tively, for first and second class vibrations. The algorithm proved quite efficient, generating
24 eigenvalues and eigenvectors for 15 values n in less than two minutes.

Since the eigenvectors (the U~ distributions) are automatically generated by the
solution procedure, the stresses in each lamina can easily be obtained by use of strain­
displacement and constitutive relations.

EXAMPLES

In order to briefly indicate the accuracy and versatility of this method two examples
are presented. In both examples the radius R (the average of the inner and outer surface
radii) and the maximum material density in the laminates are taken as unity, and 50 equal
thickness laminas are chosen to model the sphere, resulting in 101 and 202 components for
the vectors {U~} and {U~}, respectively.

Solid isotropic sphere

Results for the lowest natural frequencies of a solid isotropic sphere (Poisson's ratio
v = 0·25) obtained by the present method and those given by Sato and Usami [3J are listed
in Table L The reference frequency WRef is taken as a- 1(p./p)t with a the sphere radius and
p. the shear modulus. As is evident, the results of the present method are in excellent agree­
ment with those in [3] for all values n considered. These Feuts could have been improved
even further by using a more elaborate modeJ.t

t For example the fifth lowest frequency at n = SO for secondclallll~ is74-833 for die 5Gc1lanii1a model
and 74·818 for a 7S,equalahickness lamina model as C01DplD.1Ild to SidlIlUIlli' Usarm~s vafue 74·814.
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TABLE I. COMPARISON OF FREQUENCIES n = wa/(Jl/p)t FOR SOLID ISOTROPIC SPHERE; V = 0·25

309

Mode No.1 Mode No.2 Mode No.3 Mode No.4 Mode No.5

Values Present Present Present Present Present
n results Ref. [3] results Ref. [3] results Ref. [3] results Ref. [3] results Ref. [3]

First class vibrationst
1 i i 5·763 5·763 9·095 9·095 12·323 12·322 15·515 15·514
2 2·501 2·501 7·136 7·136 10·515 10·514 13-772 13·771 16·983 16·983
5 6·266 6·266 10·951 10·950 14·511 14·510 17·886 17·885 21·181 21·180

10 11·792 11·792 16·882 16·882 20·732 20·731 24·311 24·310 27·760 27·760
25 27·554 27·554 33·644 33·643 38·159 38·158 42·245 42·244 46·106 46·104
50 53·240 53·240 60·475 60·474 65·762 65·760 70·466 70·461 74·852 74·842

100 104·067 104·066 112·845 112·841 119·191 119·179 124·769 124·743 129·919 129·871
Second class vibrations

0 4·440 4·440 10·494 10·494 16·073 16·073 21·579 21·579 27·059
1 i i 3·425 3-424 6·771 6·771 7·745 7·744 10·695 10·695
2 2·640 2·640 4·865 4·865 8·329 8·329 9·780 9·780 12·157 12·157
5 6·033 6·033 9·636 9·636 12·368 12·368 15·179 15·179 16·818 16·818

10 10·855 10·855 16·619 16·619 19·282 19·282 22·080 22·080 24·886 24·886
25 24·834 24·833 33·615 33·615 38·112 38·111 41·883 41·882 45·049 45·046
50 47·926 47·912 60·184 60·183 65·708 65·704 70·471 70-461 74·833 74·814

100 94·268 112·098 118·868 124·638 129·904

t No nontrivial results exist for n = o.
i Rigid body motion.

Laminated orthotropic sphere

In order to give an indication ofthe versatility ofthe method a three layer hollow sphere
with H/R = 1·0 is c.:>nsidered. The inner and outer layers of thickness 0·3H and 0·2H,
respectively, are composed of a material with properties

ell = 0·70 el 2 = 0·30 e~2 = 7·00 e~3 = 3·00 el4= 2·00 pi = 1.0

and the middle layer of thickness 0·5H is composed of a material with properties

eL = 0·70 ei2 = 0·30 q2 = 0·70 e~3 = 0·30 eI4 = 0·02 p2 = 1·0

where the superscript denotes material number. Letting W Ref = n/H(el4/pl)t, a list of
frequencies is given in Table 2 and several displacement distributions are shown in Fig. 2,

TABLE 2. loWEST FIVE FREQUENCIES n = wH/n(C14/pl)t) FOR FIRST AND SECOND CLASS VIBRATIONS OF

LAMINATED ORTHOTROPIC SPHERE

Mode No.1 Mode No. 2 Mode No.3 Mode No. 4 Mode No.5

Values First Second First Second First Second First Second First Second
n class class class class class class class class class class

0 0·5888 1·1316 1·6609 2·0603 2·5662
1 t t 0·1393 0·3036 0·2769 0·3420 0·4479 0·4925 0·6332 0·6351
2 0·2697 0·2571 0·3971 0·4931 0·4913 0·5281 0·6362 0·7038 0·7997 0·7296
5 0·5368 0·4778 0·6557 0·8299 0·7911 0·9659 0·9442 1·0958 1·0978 1·1214

10 0·9580 0·8358 1·0831 1·3149 1-1942 1·5546 1·3083 1·7061 1·4363 1·8172
25 2-1726 1·2211 2·3314 2·0041 2·4663 2·7550 2·5892 3·2891 2·7045 3·5310

t Rigid body motion.
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FIG. 2. Displacement distributions in r oflowest vibratory modes for laminated sphere.

clearly indicating the significant changes in the physical behavior of the laminated sphere.
Of special interest are the cases n > 25, where nearly all motions occur in the weaker
interior layer.

CONCLUSIONS

An efficient method has been presented for studying the natural vibrations of arbitrarily
laminated orthotropic spheres. The method is shown to give accurate results over a large
range of frequencies and values n and to automatically furnish information on the radial
dependence ofthe displacements. The results of this analysis, along with those for laminated
plates [15] and cylinders [16] will be useful for determining modeling capabilities of various
structural models and will provide a reference for developing refined plate and shell
theories. The results obtained may also be used to study the response of spheres to transient
loads, a problem of interest in biomechanical and geophysical applications.
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A6c:TpaKT-IlpHMeHlIeTclI MeTOp;, OCHOBaHHbIll: Ha cnoco6e Pell:JIell-PHTI..\a, c I..\eJIblO HCCJIep;OBaHHlI
cBo6oP;HbIX KOJIe6aHHll: ynpyrHx ccPeP H3TOBJIeHHbIX H3 npOH3BOJIbHOrO 'IRCJIa CcPePH'IecKHX CJIOeB, KalK­
P;bIll: H3 KOTOpbIX o6JIap;aeT pa3Holl: ITJIOTHOCTblO H pa3HhlMH cBoll:cTBaMH CcPePH'IecKOll: OpToTponHH/
nOnepe'lHall H30TponHlI/. IlpHMeHlIeTclI OCHOBHall l!>opMa P;JIlI nOJIlI nepeMellleHHlI, H3BeCTHall H3 H3Y'leHHlI
H30TponHoll: CcPePbI, HO 3a HCKJIIO'IeHHeM pap;HaJIbHoll: 3aBHCHMOCTH, KOTOpylO 06cYlKP;aeTclI npH6JIHlKe­
HHhlM cnoc060M, paccMaTpHBall ccPepy KaK cOBOKynHocTb 60JIbWOro '1HCJIa CcPePH'IecKHX CJIOeB. )l;JIlI
KalKp;oro CJIOll, pap;HaJIbHalI 3aBHCHMOCTb nOJIlI nepeMellleHHll: xapaKTepH3HpyeTclI KOHe'lHhlM '1HeJIOM
0606111eHHbIX Koopp;HHaT. )l;alOTclI npH6JIHlKeHHbIe peweHHlI P;JIlI P;ByX aJIre6paH'IecKHx 3ap;a'l Ha C06cT­
BeHHbIe 3Ha'leHHlI, paC'IHTaHHbIX,uJIlI H30TponHoll: HCJIOHCToli OpTOTponHOH CcPePbI.


