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Abstract—A method based an the Rayleigh-Ritz technique is -used to study the natural vibrations of elastic
spheres composed of an arbitrary number of spherical layers, each with distinct density and spherically ortho-
tropic (transversely isotropic) properties. The basic form of the displacement field known from studies of isotropic
spheres is employed, except for the radial dependence which is taken in an approximate manner by considering
the sphere to be an assemblage .of a large number of spherical laminas; for each lamina, the radial dependence
of the displacement field is characterized by a discrete number of generalized coordinates. The approximation
results in two algebraic eigenvalue problems which are solved for examples of isotropic and:laminated orthotropic
spheres.

INTRODUCTION

THE natural vibrations of elastic isotropic spheres have been studied for nearly a century,
from the early works of Jaerish [1] and Lamb [2], to the recent analyses given by Sato and
Usami [3] and Shah et al. [4]. In the latter paper the natural vibrations of spheres were used
to examine the accuracy of several shell theories in a manner similar to Mindlin’s [5]
comparison of exact and approximate plate theories and to Mirsky’s {6] study of circular
cylinders. The behavior of laminated media in general and particularly laminated spheres
has received little attention, except for approximate analyses [7-9], or for cases of ho-
mogeneous orthotropic or simple two layer systems with isotropic laminates [6, 10-14].
Recently, analyses were presented of the natural vibrations and waves in arbitrarily
laminated orthotropic infinite plates [15] and circular cylinders [16].

In this paper a Rayleigh-Ritz procedure analogous to that given-in [15, 16] is used to
investigate the natural vibrations of elastic spheres composed of an arbitrary number of
laminates, each with specified density and spherically orthotropic, i.e. transversely iso-
tropic material properties. In this procedure the dependence of the displacement field in
the spherical angles 6 and ¢ is specified at the outset as in the classical approach, but the
radial dependence is taken in an approximate manner using a discrete set of generalized
coordinates. This approach results in an algebraic eigenvalue problem which is solved by
use of an efficient eigensolution technique {17]. The accuracy and efficiency of this for-
mulation are demonstrated by reproducing the results given by Sate and Usami [3] for a
solid isotropic sphere and an additional example is presented to indicate#s wersatility and
range of applicability.
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FORMULATION OF THE FREQUENCY EQUATION

In order to study the vibrations of laminated orthotropic spheres the displacement
forms which describe the behavior of isotropic spheres are required. As given in [4], the
displacement forms u;, i = r, 0, ¢ are of two types,

(a) First class vibrations (equivoluminal)

ufr,0,¢6,)=0
ug(r, 0, ¢, t) = mU (r, )P}(cos 6) sin m¢ (1a)

m
n

dP
u¢(r7 0: ¢7 t) = Ul(r’ t) d9

(cos 0) cos ma.

(b) Second class vibrations
u,(r,0. b,1) = Us(r, 1)P3(cos 6) cos m

dpPm
do

ugr,0,¢,1) = Uj(r, 1) (cos 8) cos m¢ (1b)

Pcos 8) .

———sin
in 0

where t denotes time, r the spherical radius, # and ¢ spherical angles, see Fig. 1 and P7
denotes the associated Legendre function of degree » and order m with m, n positive integers.
Although the analytical development in {4] is presented for isotropic spheres, the forms
given in equations (1) also apply for the case of transverse isotropy, as may be verified by
direct substitution into the displacement equations of motion. Further, substitution also
shows the functions Ufr, 1), i = 1, 2, 3 to be independent of the value m. This occurrence,
together with the fact that the value m does not influence the interface or free boundary
conditions, leads to a frequency equation and thus frequencies and radial distributions of
the associated eigenvectors which are independent of m. Consequently only the case
m = 0 need be considered where the solution forms are much simpler.

upr,0,¢,t) = —mUs(r, 1) mo

LAMINA
LAMINATE

F1G. 1. Laminated orthotropic sphere.
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(a) First class vibrations (torsional)

U =u,=90
dp, (2a)
uy = U,y(r, I)E(cos 0).
(b) Second class vibrations
u, = U,(r, t)P,(cos 6)
P
uy = U,(r, t)%(cos 0) (2b)

with P, = P? a Legendre polynomial of order n. Rather than directly solve the field
equations for the radial dependence in the functions U(r, t) i = 1,2, 3 and formulate the
frequency equation in the usual way, the sphere is represented by a number of concentric
spherical subregions called laminas, several of which may represent a single laminate. For
each lamina the quantities U(r, t) in equation (2) are approximated for convenience by the
quadratic form

Udr,t) = U(t) . (1 =3#4+28)+ Up (1) . (@8 =)+ Up{t) . (—F+28%) i=1,2,3 (3)
where

P=(r—r)/h @)

is a local radial variable, r; is the inner radius of the lamina, h its thickness, and Uy;, U,,;
and Uy, are the generalized coordinates for inner, middle and outer lamina surfaces,
respectively.

The strain and kinetic energies for the lamina are obtained by integrating the strain
and kinetic energy densities over the lamina volume

1 2r pn pry+h
V= EJ‘ f f [(C, 13rzr+2C128rr(500+8¢¢)+C22(830+3$¢)
o 0 rr
+2C 238098 g9 +4C aalel +82) + 2Cy, — Cy3)ed,r* sin8drd6d¢g  (5a)

2r pr prith
T= % f f f p(i2 + 12 +i3)r? sin 0 dr d0 dp (5b)
0 O vry

where ¢;; and C;; are, respectively, the small strain tensor components and the transversely
isotropic elastic moduli, p is the mass density and the dot denotes differentiation in time.
After substitution of the displacement forms in equations (5) and integration, the energies
take the form
ViSHATRCY (6a)
. N Te i pai i=1,
T! = 3{F}Tm']{#} (6b)
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where the superscript i = 1,2 denotes the ith vibration class and the symbol {r'} is one of
the ordered sets of coordinates

r

nT
]

{ Urs Uyt Ugy (7a)
1r237 = (U2, Ups, Upa, Upgs, Ugas Ugs) (7b)
and [k'] and [m'] are the lamina stiffness and mass matrices, respectively, for the ith vibration

class. The Lagrangian L for the complete system is obtained by summation over all the

laminas ) o _ ' )
L= (T'=V)=H{U}T[MUU} - {U} KUY (8)

where { U'} is the set of generalized coordinates and [K'] and [M'] are the stiffness and mass
matrices for the ith class vibrations of the entire sphere. Use of Lagrange’s equations gives

(KU + MUY} =0 ©)
which, for simple harmonic motion
{U'} = {Up} e (10)
reduces to the eigenvalue problem
(K=’ M{Us} = 0. (11)

Although this equation can be analyzed by a variety of numerical techniques for this study
a direct iterative eigensolution technique [17] is used, since a number of eigenvalues and
associated eigenvectors are simultaneously generated. An IBM 360/91 computer was
programmed to generate for each value n sets of eight and sixteen eigensolutions, respec-
tively, for first and second class vibrations. The algorithm proved quite efficient, generating
24 eigenvalues and eigenvectors for 15 values » in less than two minutes.

Since the eigenvectors (the UL distributions) are automatically generated by the
solution procedure, the stresses in each lamina can easily be obtained by use of strain—
displacement and constitutive relations.

EXAMPLES

In order to briefly indicate the accuracy and versatility of this method two examples
are presented. In both examples the radius R (the average of the inner and outer surface
radii) and the maximum material density in the laminates are taken as unity, and 50 equal
thickness laminas are chosen to model the sphere, resulting in 101 and 202 components for
the vectors {U}} and {U}, respectively.

Solid isotropic sphere

Results for the lowest natural frequencies of a solid isotropic sphere (Poisson’s ratio
v = 0-25) obtained by the present method and those given by Sato and Usami [3] are listed
in Table 1. The referénce frequency wg,, is taken as a~ *(u/p)* with a the sphere radius and
4 the shear modulus. As is evident, the results of the present method are in excellent agree-
ment with those in [3] for all values n considered. These sesults could have been improved
even further by using a more elaborate model.t

t For example the fifth lowest frequency at n = 30 for second ciass vibration is 74-833 for the 58 damina model
and 74-818 for a- 7$equal. thickness lamina model as compared to Sato aod Usami’s vatue 74-814.
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TABLE 1. COMPARISON OF FREQUENCIES Q = wa/(u/p)? FOR SOLID ISOTROPIC SPHERE; v = 0-25

Mode No. 1 Mode No. 2 Mode No. 3 Mode No. 4 Mode No. 5
Values Present Present Present Present Present

n results Ref. [3] results Ref. (3] results Ref. [3] results Ref. [3] results Ref. {3]
First class vibrationst

1 1 by 5763 5763 9095 9095 12.323 12-322 15-515 15514
2 2-501 2501 7-136 7136 10-515 10-514 13772 13771 16-983 16-983

S 6-266 6-266 10951 10950 14.511 14.510 17-886 17-885 21-181 21-180
10 11-792 11792 16-882 16-882  20:732 20731 24.311 24310 27760 27760
25 27-554  27-554  33-644 33.643 38159 38-158 42245 42244 46106 46104
50 53.240  53.240 60475 60474 65762 65760  70-466 70-461 74.852  74.842

100 104067 104-066 112-845 112-841 119191 119179 124769 124743 129919 129871

Second class vibrations

0 4440 4.440 10-494 10-494 16073 16-073 21-579 21-579 27059 —

1 by i 3425 3424 6771 6771 7-745 7-744 10-695 10-695
2 2-640 2640 4-865 4-865 8-329 8-329 9-780 9-780 12:157 12-157

5 6-033 6033 9-636 9636 12-368 12-368 15179 15179 16-818 16-818
10 10-855 10-855 16619 16-619 19-282 19-282 22080  22-080 24-886  24-886
25 24834  24.833 33615 33.615 38112 38111 41-883 41.882 45049 45046
50 47926 47912 60184  60-183 65-708 65704 70471 70-461 74-833 74-.814

100 94-268 — 112-098 - 118-868 — 124638 — 129904 —

+ No nontrivial results exist for n = 0.
t Rigid body motion.

Laminated orthotropic sphere

In order to give an indication of the versatility of the method a three layer hollow sphere
with H/R = 1-0 is considered. The inner and outer layers of thickness 0-3H and 0-2H,
respectively, are composed of a material with properties

CH, =070 C!, =030 Ci, =700 Ci;=300 Cl, =200 p'=10
and the middle layer of thickness 0-5H is composed of a material with properties

C} =070 C%,=030 C3,=070 C%, =030 Ci, =002 p?>=10
where the superscript denotes material number. Letting wg. = n/H(CL,/p")?, a list of

frequencies is given in Table 2 and several displacement distributions are shown in Fig. 2,

TABLE 2. LOWEST FIVE FREQUENCIES Q = wH/n(C},/p")*) FOR FIRST AND SECOND CLASS VIBRATIONS OF
LAMINATED ORTHOTROPIC SPHERE

Mode No. 1 Mode No. 2 Mode No. 3 Mode No. 4 Mode No. 5
Values First Second First Second  First Second  First Second  First Second

n class class class class class class class class class class

0 - 0-5888 - 1-1316 - 1-6609 - 2.0603 - 2-5662

1 t 1 01393 03036 02769 03420 04479 04925 06332 06351

2 02697 02571  0-3971 0-4931 04913  0-5281 06362 07038 07997  0.7296

5 05368 04778 06557 08299  0-7911 09659 09442 10958 10978 1-1214

10 09580  0-8358 10831 1-3149 11942 1-5546 1-3083 1.7061 1-4363 1-8172
25 2:1726 1.2211 2.3314  2:0041 24663 27550  2.5892 - 3.2891 27045 35310

t Rigid body motion.
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Fic. 2. Displacement distributions in r of lowest vibratory modes for laminated sphere.

clearly indicating the significant changes in the physical behavior of the laminated sphere.
Of special interest are the cases n > 25, where nearly all motions occur in the weaker

interior layer.

CONCLUSIONS

An efficient method has been presented for studying the natural vibrations of arbitrarily
laminated orthotropic spheres. The method is shown to give accurate results over a large
range of frequencies and values » and to automatically furnish information on the radial
dependence of the displacements. The results of this analysis, along with those for laminated
plates [15] and cylinders [16] will be useful for determining modeling capabilities of various
structural models and will provide a reference for developing refined plate and shell
theories. The results obtained may also be used to study the response of spheres to transient
loads, a problem of interest in biomechanical and geophysical applications.
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Ab6crpakT—IIpUMEHSIETCA METOM, OCHOBaHHbIK Ha criocobe Pelines—Purua, ¢ Lenblo MCCNENOBaHHA
cBOGOAHBIX KoeOaHuil yIpyrux cdep M3TOBIIEHHBIX M3 MPOU3BOJBHOIO 4YMCHa CHEepHYECKUX CIIOEB, KaXkK-
bl M3 KOTOPHIX 06najaer pa3HOH TUIOTHOCTBIO H Pa3HBIMH CBOMCTBaMu cdepHueckoit opTroTpomun/
nonepeyHasi B30Tponus/. [IpHMeHseTCA OCHOBHaA hopMa IS MOJIA MepeMeLLEHU i, M3BECTHAA H3 H3YYEHHS
M30TPONHON cepsl, HO 32 UCKIIIOYEHNEM PaaMaNbHOR 3aBHCHMMOCTH, XoTopyio obcyxnaercs npubinxe-
HHLIM cnocobom, paccMaTpusas cdepy Xak COBOKYMHOCTb GonbLIOro yucna cepuyeckux cioes. Hns
KaX[@oro clos, pajuvagbHas 3aBHCHMOCTb NOJIA NMEPEMELUEHHH XapaKTEPH3HPYETCs KOHEYHBIM YHCIIOM
060611eHHBIX KoopauHaT. Jlatotcsa npubanxeHHble PellleHus 5id ABYX anrebpanyeckux 3agay Ha cober-
BEHHBIE 3HAYCHHKS, PACYUTAHHBIX /IS K30TPOMHOR M CJIOUCTON OPTOTpONHO#H chepsl.



